
Postprint, January 2023

All That Glitters Is Not Gold:

Four Maturity Stages of Process Discovery

Algorithms

Jan Martijn E. M. van der Werf Artem Polyvyanyy
Bart R. van Wensveen Matthieu Brinkhuis

Hajo A. Reijers

Abstract

A process discovery algorithm aims to construct a process model that
represents the real-world process stored in event data well; it is precise,
generalizes the data correctly, and is simple. At the same time, it is
reasonable to expect that better-quality input event data should lead to
constructed process models of better quality. However, existing process
discovery algorithms omit the discussion of this relationship between the
inputs and outputs and, as it turns out, often do not guarantee it. We
demonstrate the latter claim using several quality measures for event data
and discovered process models. Consequently, this paper requests for more
rigor in the design of process discovery algorithms, including properties
that relate the qualities of the inputs and outputs of these algorithms.
We present four incremental maturity stages for process discovery algo-
rithms, along with concrete guidelines for formulating relevant properties
and experimental validation. We then use these stages to review several
state of the art process discovery algorithms to confirm the need to reflect
on how we perform algorithmic process discovery.

1 Introduction

Process mining studies algorithms that extract process-related information from
event data, often recorded in event logs as collections of sequences of activities,
each encoding a historical process execution [32]. Process discovery is one of
the core subareas of process mining. Process discovery studies algorithms that
construct models describing the processes that induced the input event logs as
closely as possible. One of the challenges of process discovery is that the true
processes that generated the input event logs are unknown and, thus, must be
inferred from their samples, that is, event logs [7, 24].

An algorithm is a sequence of computational steps that transform an input
into an output [9]. Different algorithms exhibit different qualities in terms of
properties like correctness, finiteness, definiteness, effectiveness, and efficiency.

1

Such properties allow us to choose an algorithm that fulfills a particular need,
such as performing a guaranteed correct computation within the desired time
bounds. A process discovery algorithm transforms a given input event log into
an output process model. A process discovery algorithm is often finite (termi-
nates after a finite number of computational steps), definite (each computational
step is unambiguous), effective (each computational step can be performed cor-
rectly in a finite amount of time), and efficient (the fewer or faster computation
steps can be executed the better). However, process discovery algorithms treat
quality as a goal rather than a guarantee. That is, process discovery algorithms
are designed to construct a “good” process model from the input event log [32],
where the “goodness” of the model is not established by the internals of the
algorithm but by external measures, e.g., precision and recall [7, 32, 23].

Recently, we observed that a process discovery algorithm can construct a
good process model from an event log and construct an inferior model from an
event log that is of better quality than the original log [23]. This observation
triggered a desire to review and refine how the quality of a process discovery
algorithm is established. In our conference paper [38], we argue that a pro-
cess discovery algorithm should come with guarantees formulated in terms of
the relationships between its inputs and outputs. This article refines the origi-
nal contributions with a discussion on statistical sampling techniques and their
effects. It makes the following contributions:

� It proposes measures for the quality of event logs, both in the presence and
absence of a true process. In the former case, we use standard conformance
checking measures, while in the latter case we rely on sampling techniques
and measures as studied in statistics;

� It discusses requirements to measure the quality of samples with respect
to an original event log and shows the effect different sampling techniques
have on the proposed quality measures;

� It provides empirical evidence that existing process discovery algorithms
can construct good models from event logs and, at the same time, produce
poor models from better logs; and

� It proposes four maturity stages for process discovery algorithms that aim
to demonstrate the relation between the quality of input event logs and
the quality of output process models.

These proposals for assessing the goodness of process discovery algorithms
can help to advance the field. Several benchmarks (cf. [2]) have identified process
discovery algorithms that “glitter,” that is, algorithms that produce high-quality
models on a limited collection of event logs. We argue that such benchmarks
should be complemented with formal analysis to provide quality guarantees
with the algorithms. We invite the process mining community to contribute
to the discussion of the maturity of process discovery algorithms. In addition,
we encourage the authors of existing and future process discovery algorithms to
establish the proposed guarantees.

2

The remainder of the paper is structured as follows. The next section argues
why process discovery algorithms need to provide guarantees. Then, a statis-
tical approach to establish event log quality is introduced in Section 3. Next,
Section 4 presents four stages of maturity for process discovery algorithms, to-
gether with empirical evidence that there are algorithms that do not provide
such guarantees. Finally, Sections 5 and 6 are devoted to related work, and
conclusions, respectively.

2 Setting the Stage

A recent study [23] revealed that for some event logs process discovery algo-
rithms could return inferior models for better quality input event logs. In this
section, we reflect on the consequences of this observation and its implications
for process discovery algorithms. We start with introducing process discovery
in Section 2.1, and discuss the desired relation between log and model quality
for process discovery algorithms in Section 2.2.

2.1 Process Discovery

Process mining projects often start by assuming that some underlying process
generates an event log that can be observed, recorded, and used for process dis-
covery. We refer to this underlying entity as the true process. The true process
is, however, often unknown [7]. Hence, it can only be approximated. There-
fore, based on the observed log, process discovery algorithms aim to construct
a process model that describes the true process as closely as possible. Formally,
given a set of activities A, an event log L is defined as a multiset over finite
sequences, called traces, over A. A discovery algorithm disc can be described as
a relation disc ⊆ L(A) × 2M(A), where L(A) and M(A) are the universe of all
possible logs and the universe of all models over A, respectively. Note that some
discovery algorithms, for instance the ILP-miner [37], are non-deterministic and
can yield different results for the same input log.

To measure how well a discovered process model describes the behavior
recorded in the event log, different conformance measures have been pro-
posed [36]. Precision is a function prec : L(A)×M(A)→ [0, 1] that quantifies
the fraction of behavior allowed by the model that was actually observed. Recall
is a function rec : L(A) ×M(A) → [0, 1] that quantifies the observed behav-
ior allowed by the model. For both measures, the value of one denotes perfect
conformance between the log and model. For example, precision and recall can
be grounded in the notion of topological entropy of the processes described in
the model and log [23]. As demonstrated in [23, 29], the entropy-based preci-
sion and recall measures satisfy all the requirements for conformance measures
proposed by the process mining community [30, 36, 23, 29].

Process discovery algorithms are often designed with a specific quality goal
in mind. Several algorithms have rediscoverability as their goal: if the un-
known, true process that generated the event log has specific properties, and

3

generate

True process 𝑇𝑃

discover

𝒫𝑇

𝒫𝑆

𝑒

Event log 𝐿

Sample log 𝑆Discovered process 𝑀

Figure 1: A true process TP generates an event log L with unknown quality
PT . A sample S drawn from L has some error e. Discovering a model from S
results in a process model with quality PS .

the event log satisfies certain criteria, then the algorithm ought to discover the
true process. For example, the α-miner has the rediscoverability property for
structured workflow nets, imposing log completeness as the criterion [35]. Simi-
larly, the Inductive Miner [15] can rediscover process trees under the assumption
of activity completeness, i.e., every leaf in the tree should occur at least once
in the event log. Another common goal of process discovery algorithms is to
construct a model that scores high on one or several conformance measures
(e.g., [37, 40, 11]).

2.2 Relating Log Quality and Model Quality

The quality of the results of process discovery algorithms depends on the quality
of the input event log. Event logs are often assumed to be faithful representa-
tions of the true processes. Let us reflect on the consequences of this assumption.
Consider Fig. 1. The true process TP is executed continuously, thus generating
a stream of events, from which L is a (non-random) sample [13, 24, 36]. Assume
L is a faithful representation of the true process TP . In other words, L has a
high model quality PT , measured, for example, in terms of precision and recall
between L and TP . Therefore, L can be seen as a sample from this stream.
Potentially, samples of L can be faithful representations of TP as well. Let S
be a random sample of L. As it is a random sample, statistical methods can
be applied to establish its quality, or lack thereof e, with respect to L. And,
because S is an event log itself, it can be used to discover some model M , which
has quality PS , again measured in terms of conformance measures, but this
time between S and M . It follows that if S is a good representation of log
L, a process discovery algorithm should construct a model with a quality that
approaches PT .

Let us draw two samples from L, say S1 and S2. For S1, model M1 is

4

discovered, with quality PS1 , and for S2 a model M2 is discovered, with quality
PS2 . Suppose S1 has a higher sample quality than S2 with respect to L. In
other words, S1 is a better representation of L than S2. Intuitively, the quality
of M1 should also be closer to PT than the quality of M2. In other words, if
e(S1) ≥ e(S2) then one should expect that PS1 ≥ PS2 . Hence, it is desirable
that the process discovery algorithm also guarantees that better quality logs
result in better quality models.

In real-life situations, the true process that generated the event log is often
unknown. In most process mining methods (cf., [6, 39, 31]), the event log is
prepared, and then process discovery techniques are applied to unravel a process
model. An important concern that these methods do not address relates to the
reliability [27] of process mining projects: if the process is repeated on a new
observation, i.e., a new event log, to what degree do the results agree between
the analyses? Specifically for repeatability, also called test-retest reliability [28],
the guarantees of a process discovery algorithm come into play. If the different
samples are of similar quality, then the constructed models should be of similar
quality. However, current process discovery algorithms do not explicitly claim
to provide such guarantees, nor does an approach exist to study such claims.
Such an approach can rely on the use of samples to study the relation between
the input event log quality andi the resulting process model quality.

In the next section, we propose to use sampling techniques to measure the
quality of event logs, and show how sampling can be used to estabilish a relation
between log quality and model quality in Section 4.

3 Event Log Sampling

As argued in the previous section, a necessary step in providing guarantees
on the results of process discovery algorithms is to establish measures for log
quality. In Section 3.1, we elaborate on the idea of considering an event log L to
be a (non-random) sample of a continuous stream of events generated by a true
process TP . As a consequence, any random sample of L is a sample of the same
stream of events. Thus, random sampling techniques can be used to establish
the quality of a sample event log with respect to L. Several random sampling
techniques are presented in Section 3.2. Then, we propose seven requirements
for measuring log quality in Section 3.3. Section 3.4 discusses to what extent
standard error measures can be applied to quantify the lack of log quality. Last,
we study the effect of random sampling techniques on log quality in Section 3.5.

3.1 Event Logs as Samples

We argue that any event log can be studied as a random sample of traces gen-
erated by the true process. Similar to [36], the true process can be represented
as a set of traces with some trace likelihood function that assigns a probability
to each trace. Consequently, any sample of an event log is again a sample of the
true process, as proposed in [13]. We consider a sample log S of an event log

5

L to be a subset of the traces observed in the event log, i.e., S(σ) ≤ L(σ), for
all traces σ ∈ L and S(σ) = 0 if σ 6∈ L. This allows drawing different samples
from a given event log, and then comparing these samples with the event log to
analyze the quality of these samples. Little is known about the representative-
ness or quality of random samples in process mining [13, 41]. In the remainder
of this section, we propose random sampling techniques to be used in process
mining and provide measures to analyze the quality of a sample with respect to
the original event log.

3.2 Sampling Techniques

In this section, we propose several sampling techniques that can be used to
draw a sample from an event log, such that each trace in the event log has the
same probability of being sampled. Consequently, samples obtained using these
techniques can be used to estimate the characteristics of the event log and, thus,
of the true process. The sampling techniques build on simple random sampling
(Section 3.2.1) and stratified sampling (Section 3.2.2). An illustration of the
discussed sampling techniques for the event log summarized in Table 1 is shown
in Table 2. To obtain the samples, a sampling ratio of 25% is used.

Table 1: Example event log L with eight traces. The log consists of four unique
traces.

Trace 〈a, d, g〉 〈a, c, g〉 〈a, b, g〉 〈a, e, g〉
Frequency 4 2 1 1

Table 2: Illustration of the different sampling techniques on the event log from
Table 1, showing the challenges associated with handling infrequent traces. Each
row represents an example sample log, given by the frequency of traces, con-
structed with the respective technique.

Sample Technique Sampled event log, sample ratio: 25%
Sequence 〈a, d, g〉 〈a, c, g〉 〈a, b, g〉 〈a, e, g〉
Expected frequency 1 0.5 0.25 0.25

S1 Random Fixed 1 0 1 0
S2 Random Probability 2 1 1 0
S3 Stratified 1 0 0 0
S4 Existential Stratified 1 1 1 1
S5 Stratified Plus 1 0 0 1
S6 Stratified Squared 1 1 0 0

3.2.1 Simple Random Sampling Techniques

The first two sampling techniques are based on simple random sampling, where
a sample is created by randomly including traces with a predetermined sampling
ratio. Random fixed sampling starts by calculating the size of the event log, and
then determines the size of the sample log. The sample log is then created by

6

randomly drawing traces from the event log until the sample log has the desired
size. To illustrate the technique, two traces, sample log S2 was created by
drawing 〈a, d, g〉 and 〈a, b, g〉 out of the eight cases from event log L in Table 2.

Another sampling technique is random probability, where each trace is in-
cluded in the sample based on the inclusion probability. For example, creating a
sample of 25% results in each trace having a probability of 25% to be included in
the sample log. As an example, sample log S2 was drawn using this technique in
Table 2. It has four cases: two instances of trace 〈a, d, g〉, and traces 〈a, c, g〉 and
〈a, b, g〉 were both drawn once. As the example shows, a disadvantage of this
technique is that the resulting size of the sample might differ from the intended
size.

3.2.2 Stratified Sampling Techniques

Stratified sampling takes a different approach to creating random samples. Clas-
sical stratified sampling [8] divides the data into unique groups called strata. A
simple random sample is taken from each stratum. For process discovery, these
strata can be formed based on unique traces. In theory, this sampling technique
would give more representative samples because of the stratification of unique
traces. However, one has to be careful when applying stratified sampling: as
only a natural number of traces can be added to a sample, a trace can only be
added fully or not at all. This technique is illustrated in Table 2: there are four
strata. In the first, 25% of four sequences are selected, i.e., a single trace. For
each of the other strata, the number of elements to select is lower than 1, i.e., no
traces are selected from the other strata. Hence, a problem occurs if a stratum
contains fewer traces than expected to be sampled. One way to solve this is by
rounding, e.g. using the half to even rule (cf. IEEE 754).

Another solution for unsampled strata is existential stratified sampling. Sim-
ilar to the classical stratified approach, the half to even rule is used. However,
after rounding, a trace from each unsampled stratum is added to the sample
log. Although it ensures that the directly-follows relations of the sample log and
the original event log are identical, the main disadvantage is that these strata
are an overrepresentation in the sample. As shown in Table 2, the stratified
sample S4 is complemented by adding a single trace from the remaining strata.
Existential stratified sampling shows a trade-off between existential complete-
ness of directly-follows relations and the representativeness of the frequencies of
directly-follows relations.

The stratified plus sampling method tries to find a balance between exis-
tential completeness and frequency representativeness by randomly sampling
additional cases whose trace has not been included in the sample yet. It uses
the number of traces that were expected to be sampled and the number of
traces sampled by stratified sampling in order to determine how many addi-
tional traces should be sampled. In Table 2, the stratified sample, containing
one trace, is complemented by adding one trace, randomly selected from the
remaining traces.

A different approach is taken in the stratified squared sampling approach. It

7

extends the classical stratified approach by randomly sampling additional traces
that have not been included in the sample yet, based on the number of cases
that were expected to be sampled and the number of cases sampled by stratified
sampling: from the strata that are not represented, traces are randomly selected,
until the sample log has the desired size. First, a stratified sample is drawn.
Then, the number of sampled traces is compared to the number of expected
traces based on the sampling ratio. Due to rounding, the number of expected
traces can be greater than the number of actually added traces. If this happens,
the uncovered strata are sorted based on their frequency, and a trace of each
of these strata is added. This procedure continues until the number of sampled
traces matches the expected number of traces or until all strata are covered.

3.3 Requirements for Sample Quality Measures for Pro-
cess Mining

All random sampling techniques discussed in the previous section draw traces
from the event log: for each trace it is decided whether the whole trace is
added to the sample. Different approaches exist to estimate the quality of a
sample, e.g., grounded in the Observed Trace variants Ratio (OTR) [19], i.e.,
the ratio of observed unique traces in the sample with respect to all unique
traces in the original event log. As Table 2 shows, even though samples S1 and
S6 both contain two out of four traces, the amount of information they contain
is different, as S6 contains the more frequent trace 〈a, c, g〉.

Most discovery algorithms (cf. [35, 37, 40, 14]) abstract from traces by
using the directly-follows relation. Therefore, we propose, similar to [13, 3],
to measure sample quality based on the directly-follows relation. The directly-
follows relation >L is defined on pairs of events a and b, such that a >L b
iff the event log L contains a trace in which the two activities a and b occur
consecutively.

One way for comparing a sample to the original event log is existential com-
pleteness, i.e., the extent to which all possible directly-follows pairs are present
in the sample. This results in the first sample quality measure: coverage. Cover-
age is defined as the ratio of unique directly-follows pairs present in the sample
to the number of unique directly-follows pairs in the event log.

Coverage does not take the occurrence frequency of behavior into account.
For example, sample logs S1, S5 and S6 all have a coverage of 50%. though
sample log S6 contains a more frequent trace than the other two samples. Dif-
ferent requirements can be defined to consider frequency representativeness in
measuring sample quality. However, measuring the frequency representative-
ness of a sample is more subjective than measuring existential completeness.
For example, for process conformance testing, like audit, rare behavior might
be of interest, while for another type of project, only the most frequent traces
are essential. Therefore, instead of pointing towards a single best measure for
frequency representativeness, we present a list of generic requirements, and pro-
pose several measures, assessing them against these generic requirements. The

8

proposed requirements are formulated in terms of a penalty, or an error, that
measures of sample quality should assign to samples under different conditions.

R1. Respect exact matches: The measure should report no error when
the frequencies of directly-follows pairs of the sample exactly match the
expected frequencies;

R2. Doubling has no effect: Doubling the number of unique directly-follows
pairs present in the original event log should not affect the reported error
when the new unique directly-follows pairs are equally often expected and
sampled as the unique directly-follows pairs before doubling;

R3. Be proportional: Doubling the number of occurrences of every directly-
follows pair present in the original event log should not affect the reported
error when the deviation of each sampled directly-follows pair is propor-
tionally the same (e.g. the deviation of a directly-follows pair which is
expected to occur five times, but is sampled three times is proportional
to the same directly-follows pair being expected to occur fifty times, but
being sampled thirty times);

R4. Punish absolute deviations: When the sample size is varied while the
absolute deviation is kept the same (e.g. all directly-follows pairs are off by
one occurrence), then the error reported by the measure should increase
when the sample size decreases;

R5. Punish large over small errors: When one directly-follows pair is
oversampled by four (i.e., is sampled four more times than its expected
frequency), then the reported error should generally be larger compared
to when four directly-follows pairs are oversampled by one occurrence;

R6. Trace frequency: A sample where only the least often occurring directly-
follows pair is off by one (i.e., sampled once more or once less often than
its expected frequency) should generally report a higher error than the
same sample where only the most often occurring directly-follows pair is
off by one;

R7. Maintain perfect sampled pairs: Given two samples of different sizes,
if the frequency of a directly-follows pair matches the expected occurrences
in both samples, and all other pairs have the same deviations, then the
smaller sample should be penalized more.

3.4 Sample Quality Measures for Process Mining

In this section, we show how standard error measures from the field of statistics
can be adapted to quantify log quality. Error measures are used to quantify
the error between the expected values and the real occurrences. As argued
in the previous section, we propose to measure sample quality based on the
directly-follows relation. Thus, we want to establish the error based on the

9

directly-follows relation, and compare the occurrence of each behavior, i.e, each
element in the directly-follows relation, with its expected value. Each expected
value can be derived from the sampling ratio. As a result, we obtain several
measures of sample quality. In the definitions that follow, by e we denote the
expected behavior, and by s, we denote the sampled behavior as vectors of
length n (i.e. n denotes the number of unique directly-follows pairs):

The (Normalised) Mean Absolute Error (NMAE) calculates the nor-
malized absolute deviation (i.e., error) of the number of occurrences of
each unique directly-follows relation of the sample from their respective
expected frequency:

NMAE =
MAE

avg e
=

∑n
i=1 |si − ei|∑n

i=1 ei
. (1)

The (Normalised) Root Mean Square Error (NRMSE) is similar to
the NMAE, but uses the root of the squared deviations, instead of the
absolute values, thus penalizing large deviations more heavily:

NRMSE =
RMSE

avg e
=

√
1
n

∑n
i=1(si − ei)2

1
n

∑n
i=1 ei

. (2)

The Mean Absolute Percentage Error (MAPE) expresses the deviation
as a percentage. Its symmetric version (sMAPE) has the advantage that
the undersampling of behavior is penalized more heavily:

MAPE =
1

n

n∑
i=1

∣∣∣∣ei − si
ei

∣∣∣∣ , sMAPE =
1

n

n∑
i=1

|ei − si|
ei + si

. (3)

The Symmetric Root Mean Square Percentage Error (sRMSPE) is
similar to sMAPE but uses the root mean square error instead of the
mean absolute error, thus penalizing large deviations more heavily:

sRMSPE =

√√√√ 1

n

n∑
i=1

(
ei − si
ei + si

)2

. (4)

These measures assess the behavioral quality of a sample with respect to
the event log it is drawn from. In other words, these measures provide ways
to establish the quality of the input of process discovery algorithms. Table 4
shows each measure on the samples in Table 2. The frequencies of behavior
in both samples are shown in Table 3. Sample S4 has perfect coverage, as
every directly-follow pair of L occurs at least once in the sample. The MAE
and the NMAE report the same relative error for S1 and S4, as the expected
frequencies are equal for both samples. Note that the NMAE would adjust itself

10

Table 3: The expected frequencies of directly-follows pairs together with the
frequencies of directly-follows pairs of sample S1 and sample S4 of event log L
(Table 2).

Frequency
Expected S1 S2 S3 S4 S5 S6

a >L b 0.25 0 1 0 1 0 0
a >L c 0.50 1 1 0 1 0 1
a >L d 1.00 1 2 1 1 1 1
a >L e 0.25 0 0 0 1 1 0
b >L g 0.25 0 1 0 1 0 0
c >L g 0.50 1 1 0 1 0 1
d >L g 1.00 1 2 1 1 1 1
e >L g 0.25 0 0 0 1 1 0

Table 4: Errors reported by the proposed measures on the samples in Table 2.
Error Measure S1 S2 S3 S4 S5 S6

Coverage 0.50 0.75 0.25 1.00 0.50 0.50
MAE 0.25 0.63 0.25 0.50 0.38 0.25
NMAE 0.50 1.25 0.50 1.00 0.75 0.50
RMSE 0.31 0.68 0.31 0.59 0.47 0.31
NRMSE 0.61 1.37 0.61 1.17 0.94 0.61
MAPE 0.75 1.50 0.75 1.75 1.25 0.75
sMAPE 0.58 0.57 0.75 0.38 0.65 0.58
sRMSPE 0.73 0.63 0.87 0.46 0.77 0.73

with respect to sample size, whereas MAE is size agnostic. Sample S4 scores
better on sMAPE than S1, as S1 does not sample two directly-follows pairs,
whereas S4 only oversamples pairs. This illustrates that the sMAPE measure
gives a higher penalty for unsampled behavior. RMSE, NRMSE, and sRMSPE
give comparable results for these two samples as these samples do not contain
large deviations between actual and expected frequencies.

As these examples show, not all measures satisfy all requirements. Therefore,
we analyzed each measure against the requirements. The results of this analysis
is shown in Table 5. A shortcoming of the MAE measure is that changes in the
expected sample size are not reflected in the reported error (R4). For example, in
one sample, a directly-follows relation is expected to occur ten times and occurs
nine times, while in another sample with larger sample size, this directly-follows
relation is expected to occur one hundred times and occurs ninety-nine times.
The MAE gives these two samples an equal error because both are exactly off by
one. It fails to satisfy most requirements, see Table 5. Normalizing the MEA,
i.e., the NMAE measure, results in a measure that leads to the fulfillment of
most of the requirements.

The RMSE measure behaves similarly to MAE. However, it penalizes more

11

Table 5: Testing each frequency representativeness measure against the require-
ments.

Measure R1 R2 R3 R4 R5 R6 R7
MAE 3 3 7 7 7 7 7
NMAE 3 3 3 3 7 7 3
RMSE 3 3 7 7 3 7 7
NRMSE 3 3 3 3 3 7 3
MAPE 3 3 3 3 7 3 7
sMAPE 3 3 3 3 7 3 7
sRMSPE 3 3 3 3 3 3 7

significant deviations more heavily, which can be a desired property if unbal-
anced samples are undesired (i.e. samples where the number of occurrences
of one or a few directly-follows relations deviate a lot from their expected fre-
quency). Its normalization, i.e., the NRMSE, results in a measure that satisfies
all requirements, except R6.

The main difference between the MAPE and NMAE is that the MAPE
does not decrease the error when increasing the number of occurrences of one
or more perfectly sampled directly-follows relations while still keeping them
perfectly sampled. Vice versa, the NMAE does not report a lower error when
the most occurring directly-follows relation is off by one compared to the least
occurring directly-follows relation being off by one. Its symmetric version, i.e.,
the sMAPE measure, ticks the same requirements, but the sMAPE does favor
existential completeness compared to the MAPE, because it gives unsampled
behavior the highest possible penalty. This makes the sMAPE measure more
appropriate for process discovery of rare behavior.

Comparing the sRMSPE with the sMAPE shows that the former uses the
square root error, instead of the mean absolute error. Consequently, the sRM-
SPE gives a more significant penalty to directly-follows relations whose number
of occurrences is further off its expected frequency. If this property is desired,
then the sRMSPE should be selected over the sMAPE.

Overall, the analysis of the requirements shows that if existential complete-
ness is important, sMAPE or sRMSPE should be chosen; otherwise, the NMAE
or NRMSE should be used. When single large deviations are not desired, then
the root mean square error-based measures should be used instead of the mean
absolute error variants.

3.5 Effects of Sampling Techniques on Log Quality

Using the sample quality measures, the effects of the different sampling methods
can be studied. For this evaluation, we used two event logs that were generated
from a Petri net with a start transition a, followed by five parallel transitions
b, c, d, and e, and final transition f . The first event log, L1, is a balanced log,
i.e., all traces have a similar frequency, whereas the second event log, L2, has

12

Chapter 5. Illustrating Sampling and Sample Quality Measures 69

0.85

0.90

0.95

1.00

0.01 0.05 0.1 0.2 0.5

Sample Ratio

C
ov

er
ag

e

0.0

0.1

0.2

0.3

0.4

0.01 0.05 0.1 0.2 0.5

Sample Ratio

N
M

A
E

0.0

0.2

0.4

0.01 0.05 0.1 0.2 0.5

Sample Ratio

M
A

P
E

0.0

0.1

0.2

0.3

0.01 0.05 0.1 0.2 0.5

Sample Ratio

sM
A

P
E

0.0

0.2

0.4

0.01 0.05 0.1 0.2 0.5

Sample Ratio

N
R

M
S

E

0.0

0.1

0.2

0.3

0.4

0.01 0.05 0.1 0.2 0.5

Sample Ratio

sR
M

S
P

E

Sampling Technique

Random Fixed

Random Probability

All Stratified Variants

Figure 5.3: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L3 as original event log.Figure 2: The effects of different sample ratios and sampling techniques on the

quality measures of samples from the balanced event log L1

many infrequent traces, i.e., all traces occur only once in the event log.
Each event log has been sampled using these random sampling techniques:

random sampling with a fixed sample size (random fixed), probability-based
random sampling (random probability), stratified sampling, existential stratified
sampling, stratified plus sampling, and stratified squared sampling. Sampling
with each technique was repeated one hundred times for each of the following
five sampling ratios: 0.01, 0.05, 0.1, 0.2, and 0.5. This resulted in one hundred
samples for each combination of sampling technique and sample ratio. For each
sample, the coverage, NMAE, MAPE, sMAPE, NRMSE, and sRMSPE have

13

Chapter 5. Illustrating Sampling and Sample Quality Measures 66

0.4

0.6

0.8

1.0

0.01 0.05 0.1 0.2 0.5

Sample Ratio

C
ov

er
ag

e

0

1

2

3

0.01 0.05 0.1 0.2 0.5

Sample Ratio

N
M

A
E

0

10

20

30

40

0.01 0.05 0.1 0.2 0.5

Sample Ratio

M
A

P
E

0.2

0.4

0.6

0.01 0.05 0.1 0.2 0.5

Sample Ratio

sM
A

P
E

0

1

2

3

0.01 0.05 0.1 0.2 0.5

Sample Ratio

N
R

M
S

E

0.2

0.4

0.6

0.8

0.01 0.05 0.1 0.2 0.5

Sample Ratio

sR
M

S
P

E

Sampling Technique

Random Fixed Random Probability

Stratified Existential Stratified

Stratified Plus Stratified Squared

Figure 5.2: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L2 as original event log.

NMAEM and NRMSEM in more detail. Probability-based random sampling performs

poorly on both sample measures, while stratified squared sampling seems to consistently

have the lowest error on these two sample quality measures. The difference between the

Figure 3: The effects of different sample ratios and sampling techniques on the
quality measures of samples from event log L2 containing only infrequent traces.

been calculated. Next, for each combination of sampling technique and sample
ratio, the quality measures have been averaged over the one hundred samples
and the standard deviation has been calculated.

Figure 2 shows the effects of sampling on the balanced event log. As there
are no infrequent traces in this event log, the values reported by all four dif-
ferent variations of stratified sampling techniques are exactly the same. The
probability-based random sampling technique consistently performs worst on
all measures. The fixed sample size random sampling technique only performs
marginally better. All four stratified sampling techniques seem to create near-

14

perfect samples, especially when the sample ratio is 0.05 or larger.
The effects of the sampling techniques are more evident in the event log

with infrequent traces, as shown in Figure 3. By definition, existential stratified
sampling always results in a perfect coverage of 1. However, as the measures
show, it oversamples rare directly-follows relations, which is especially true for
the smaller sample ratios. Stratified sampling performs the worst of all sampling
techniques, as it leaves out all rare sequences from the original event log. The
evaluation also confirms that the non-symmetric measures (NMAE, MAPE, and
NRMSE) perform worse on an event log with many infrequent traces than the
symmetric measures (sMAPE, sRMSPE). Probability-based random sampling
performs poorly on these sample measures, while stratified squared sampling
consistently has the lowest error on NMAE and NRMSE. The difference between
the sampling techniques is most significant with a sample ratio of 0.01, while for
larger sample ratios, the difference between the sampling techniques decreases.

As this evaluation shows, random sampling and error measures can be used
to express log quality, given an original event log. In the next section, we propose
four maturity stages for process discovery algorithms, and show how sampling
can be used to establish a relationship between log and model quality.

4 Designing Process Discovery Algorithms with
Guarantees

As observed in a study on the quality of conformance measures [23], some process
discovery algorithms have a large variability in the quality of the constructed
process models. In particular, given different samples of a single event log, the
same algorithm sometimes provides good results on small samples, while on
larger samples, the algorithm discovers worse models. On further inspection,
these algorithms are state of the art and do not perform any major “process
mining crimes” [25]. In addition, they “glitter” in the benchmark study reported
in [2].

We consider this observation a threat to the application of process mining,
particularly for its repeatability and, hence, the reliability of its results. Suppose
for a true process, several event logs are captured and analyzed, and the results
do not agree – they differ in quality. Several explanations for this phenomenon
are possible. A first explanation could be the quality of the input, i.e., the
quality of the event logs differed significantly. However, as the observation
highlights, another plausible – yet undesirable – explanation lies in the process
discovery algorithm itself. In other words, if the process discovery algorithm
does not provide any guarantees on the quality of the resulting models, it is
impossible to exclude the algorithm as a root cause.

Consequently, we advocate that process discovery algorithms should provide
guarantees on the quality of the produced results. To this end, we propose to
distinguish four stages of maturity for a process discovery algorithm:

1. The algorithm is well designed;

15

2. The algorithm is validated on real-life input;

3. The algorithm has an established relationship between the log and model
quality;

4. The algorithm is effective.

As illustrated later, not all algorithms make it to the second stage. Arguably,
algorithms that do not pass the second stage should not be used in empirical
studies. The third and fourth stages have never been considered before in the
context of process discovery. Once the algorithm is shown to be applicable
on real-life examples while producing useful results, the authors should study
which guarantees their algorithm provides in a controlled setting where the true
process is known. To satisfy the requirements of the last stage, the algorithm
should provide evidence that in settings where the true process is unknown, the
algorithm provides the guarantees stated in stage 3.

4.1 Stage 1: The Algorithm is Well Designed

In the first stage, the developers of a process discovery algorithm should properly
introduce their algorithm, by providing the following:

� Criteria on the event logs the algorithm uses as input, e.g., requirements
on the true process that generates the event logs;

� The class of process models the algorithm constructs;

� Evidence for meeting the quality goals of the algorithm;

� An initial evaluation of the algorithm on artificial data sets.

Most process discovery algorithms satisfy the requirements of this stage. For
example, the ILP-miner [37] is designed for the class of classical Petri nets
with interleaving semantics. It meets its quality goals: it is demonstrated that
the ILP miner always returns a Petri net with a perfect recall score for any
input. It imposes no requirements on the input event logs and is tested on
artificial logs. Also, the α-miner algorithm [35] is at least in this stage. It is
designed with the rediscoverability of well-structured Workflow nets as a goal.
To rediscover the true process, it imposes two requirements on an input event
log: it should contain all directly-follows relations present in the true process,
and the true process should be block-structured [20]. A similar argument holds
for the Inductive Miner [15].

4.2 Stage 2: The Algorithm is Validated

Even though an algorithm may be well designed, and passes stage 1, it is not
guaranteed that it is useful in practice. Therefore, the second stage of process
discovery algorithm maturity is concerned with the validation of the algorithm

16

on a collection of real-life event logs, such as logs used in the benchmark reported
in [2]. Several existing algorithms fail to reach this stage. For example, the α-
miner is, theoretically, a robust algorithm, but the requirements it imposes on
the true process are often too strong for application in real-life situations [34].
Similarly, the ILP-miner, despite being theoretically grounded, has limitations
for when it comes to practice, primarily because of its guaranteed recall and
runtime performance. Other algorithms, such as the Inductive Miner [15], the
Declare Miner [17], and the Split Miner [1] have been applied successfully on
several real-life event logs, and, thus, pass this stage.

4.3 Stage 3: The algorithm has an Established Relation-
ship Between Log and Model Quality

Although passing the second stage shows the algorithm’s capabilities, this pro-
vides little guarantee on the quality of the constructed process models, in gen-
eral, for a wide range of input event logs. As a first step in establishing a
relationship between the input event log and the output model qualities, one
can demonstrate to what degree the algorithm supports the principles sketched
in Figure 1. In other words, authors of the algorithm need to show that if an
event log is a faithful representation of the true process, as per measure PT ,
then the algorithm satisfies properties similar to those listed below:

P1. For a sample log S that approaches the perfect quality, the quality PS of
the model discovered from S approaches PT ;

P2. For two sample logs S1 and S2, if S1 has a better quality than S2, then
the model quality PS1 of the model discovered from S1 is better than the
quality PS2 of the model discovered from S2.

Authors of a process discovery algorithm can follow different strategies to
provide evidence for these properties. The most potent form of evidence is for-
mal proof that the algorithm satisfies these properties for specific instantiations
of log and model quality measures. That way, a strong relationship between

Algorithm 1: Establish Relation
1 while True do
2 TP ← GenerateTrueProcess(M, A);
3 foreach i ∈ [1..N] do
4 L← GenerateLog(TP);

5 PT ← computeModelQuality(L, TP);
6 foreach r ∈ ratios do
7 foreach j ∈ [1..K] do
8 S ← DrawSample(L, r);
9 e← computeSampleQuality(L, S);

10 M ← DiscoverModel(S);

11 PS ← computeModelQuality(S, M);

17

Table 6: Results of the controlled experiment, showing the Spearman rank corre-
lation between the error measures and precision. All bold values are statistically
significant (p < 0.001).

True Process Precision
Model precision Cov. sMAPE sRMSPE NRMSE NMAE

1 0.538 0.658 -0.988 -0.986 -0.988 -0.989
2 0.797 0.470 -0.986 -0.985 -0.901 -0.954
3 0.935 0.781 -0.990 -0.989 -0.975 -0.984
4 0.953 0.705 -0.991 -0.992 -0.984 -0.987
5 0.988 0.540 -0.983 -0.981 -0.980 -0.986
6 0.871 0.532 -0.934 -0.938 -0.917 -0.926
7 0.943 0.511 -0.991 -0.989 -0.986 -0.989
8 0.616 0.773 -0.992 -0.991 -0.989 -0.990
9 0.710 0.519 -0.981 -0.978 -0.970 -0.973

10 0.883 0.703 -0.982 -0.982 -0.977 -0.976

Table 7: Results of the controlled experiment, showing the Spearman rank cor-
relation between the error measures and recall. All bold values are statistically
significant (p < 0.001).

True Process Recall
Model recall Cov. sMAPE sRMSPE NRMSE NMAE

1 1.000 0.338 -0.356 -0.354 -0.354 -0.356
2 1.000 0.154 -0.051 -0.052 0.012 -0.004
3 1.000 0.637 -0.406 -0.417 -0.410 -0.412
4 1.000 -0.103 0.105 0.108 0.081 0.090
5 1.000 0.437 -0.201 -0.206 -0.207 -0.201
6 1.000 -0.529 0.973 0.962 0.963 0.968
7 1.000 0.456 -0.242 -0.240 -0.228 -0.231
8 1.000 0.114 -0.148 -0.154 -0.156 -0.157
9 1.000 0.518 -0.327 -0.330 -0.340 -0.341

10 1.000 0.116 -0.022 -0.027 -0.016 -0.023

an input log quality and the resulting model quality can be established. We
also encourage algorithm designers to define algorithm-specific log quality mea-
sures. If formal proof is not feasible, statistical evidence of these properties
can be provided. To this end, we propose a controlled experiment as outlined
in Algorithm 1. Such controlled experiment implements the approach outlined
in Figure 1. It requires a model generator for the class of true processes M
the algorithm supports and a set of activities A. The algorithm then generates
repeatedly for a true process one or more event logs, and for each event log a
set of samples to relate log and model quality.

We propose to use statistical tests to evaluate the two properties. Prop-
erty P1 calls for analyzing the relationship between the expected PT and the
observed PS . To establish property P2, for instance, the Spearman rank cor-
relation can be used to test whether there is a strong correlation between the
sample quality and the model quality. If this is the case, then statistical evidence
has been provided for the relationship between log and model quality.

18

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Precision true process

P
re

ci
si

o
n

sa
m

p
le

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Recall true process

R
ec

al
l

sa
m

p
le

0.4

0.6

0.8

1.0

Coverage

Figure 4: Relation between the quality of the true process and the quality of the
discovered models, for precision (left) and recall (right). Darker points represent
a higher coverage.

4.3.1 Example Evaluation

To show the feasibility of the approach, the controlled experiment has been
implemented in ProM 1 for the Inductive Miner [15]. Precision and recall are
calculated using an implementation of exact matching entropy-based measures
in Entropia [21]. For each true process, a single event log with 5,000 traces has
been generated. The event logs were 10 times sampled for 12 sampling ratios:
0.01, 0.02, 0.05, and 0.1 up to 0.9.

The results are shown in Tables 6 and 7, and in Figure 4. The diagonal
lines in the graphs indicate the desired result: a point on the diagonal indicates
that both the expected value and the actual value coincide. The darkness of
each data point indicates the coverage: the darker the point is, the higher the
coverage. As the results show, both for precision and recall, most values are on
this diagonal. Therefore, we can conclude that property P1 holds for precision
and recall.

For each model that describes the true process, the Spearman rank cor-
relation is calculated between each of the log quality measures and precision,
and similarly for recall. As for the measures sMAPE, sRMSPE, NRMSE, and
NMAE, 0 is the best quality, a negative correlation indicates the required guar-
antee that samples of higher quality result in better discovered models, whereas
for coverage, a positive correlation indicates this result. As can be seen in Ta-
bles 6 and 7, the experiment generates mixed results. Though property P2
holds for precision, it is not satisfied for recall. Hence, we can conclude that the
Inductive Miner satisfies the two properties for precision, but fails to do so for
recall on the second property.

1The source code is available on: https://github.com/ArchitectureMining/

SamplingFramework

19

https://github.com/ArchitectureMining/SamplingFramework
https://github.com/ArchitectureMining/SamplingFramework

4.4 Stage 4: The Algorithm is Effective

An established relationship between log and model quality, the essence of the
third stage, does not guarantee the algorithm to be effective in real-life situa-
tions. The main caveat in the controlled environment of the previous stage is
that the true process is known. Each event log is generated from the known true
processes. In real-life situations, the true process is unknown, and, hence, may
invalidate assumptions of the discovery algorithm. For example, the Inductive
Miner assumes event logs to be generated from process trees. However, no cri-
teria are given to test whether an event log is generated by a process tree, nor
does the algorithm provide any details on the model quality if the assumption
is invalid.

In this stage, the algorithm designer has to validate how effective the algo-
rithm is in real-life situations. One way to obtain insights into the effectiveness
of the algorithm is to apply sampling on a benchmark. This benchmark can
be a set of well-known real-life event logs as used in [2], or can be generated
automatically, if the designers ensure that the class of generated models is larger
than the class of true processes studied in the previous stage. The algorithm
designers need to analyze property P2 in the absence of a true process. In other
words, even if the true process is unknown, event logs of better quality should
return better quality models. This may result in an experiment as outlined in
Algorithm 2.

The analysis of property P2 in the absence of a true process can have two pos-
sible outcomes. Either it is shown that the algorithm has the desired property,
or, if this is not possible, the algorithm should be further improved, or provide
additional log quality measures, that guarantee that an event log satisfies the
assumptions of the process discovery algorithm.

4.4.1 Example Evaluation

As an example of the analysis in stage 4, we conducted the proposed experiment
on the Inductive Miner [15]. Two real-life event logs have been selected, the
Road Traffic Fine event log [10] and the Sepsis event log [18]. The Road Traffic
Fine log has in total 150,370 traces and 561,470 events. There are 231 unique
traces and 11 unique event types. The Sepsis log consists of 1,049 traces, of
which 845 are unique, and 15,190 events with 16 unique event types. Sampling

Algorithm 2: Test Effectiveness
1 foreach L ∈ Benchmark do
2 foreach r ∈ ratios do
3 foreach j ∈ [1..K] do
4 S ← DrawSample(L, r);
5 e← computeSampleQuality(L, S);

6 M ← DiscoverModel(S);

7 PS ← computeModelQuality(S, M);

20

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

Ratio

S
am

p
le

Q
u

al
it

y

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

Ratio

S
am

p
le

Q
u

a
li

ty

Figure 5: Plot of ratio and the sample quality measures coverage (),
sMAPE (+), sRMSPE (�), NRMSE (�) and NMAE (N) for the Road
Traffic Fine log (left) and the Sepsis log (right).

0.4

0.5

0.6

0.7

0.00 0.25 0.50 0.75

Ratio

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1.0

Coverage

P
re

ci
si

on

0.70

0.75

0.80

0.85

0.90

0.4 0.6 0.8 1.0

Coverage

R
ec

al
l

0.0

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75

Ratio

P
re

ci
si

on

0.0

0.1

0.2

0.3

0.4

0.5

0.4 0.6 0.8 1.0

Coverage

P
re

ci
si

on

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8 1.0

Coverage

R
ec

al
l

Figure 6: Plots of ratio and precision, and coverage with precision and
recall for the Road Traffic Fine log (left) and the Sepsis Log (right).

21

was done at the same sampling ratios as before: 0.01, 0.02, 0.05, and 0.1 up to
0.9. For each ratio, ten samples were drawn.

The sample quality measures for the Road Traffic Fine log are shown on the
left in Fig. 5. As the plot shows, the larger the sampling ratio, and thus the log
size, the better the quality is (error measures: ρ < −0.9, p < 0.001, coverage:
ρ = 0.96, p < 0.001). Sample size and the conformance measure on precision
(Fig. 6) show a moderate positive correlation (ρ = 0.56, p < 0.001), while
there is no correlation between sampling ratio and recall (ρ = 0.03, p = 0.72).
Analyzing the quality measures with the conformance measures shows a different
story. In Fig. 6, the coverage is plotted against the precision, indicating there
is no correlation between coverage and precision. Further analysis revealed
no correlations between the sample quality measures and precision (sMAPE:
ρ = −0.19, p = 0.03, sRMSPE: ρ = −0.18, p = 0.051, NRMSE: ρ = −0.21,
p = 0.02, NMAE: ρ = −0.20, p = 0.03, coverage: ρ = 0.17, p = 0.06). The
correlations found for recall show that samples of worse quality result in better
models (sMAPE: ρ = 0.80, p < 0.001, sRMSPE: ρ = 0.79, p < 0.001, NRMSE:
ρ = 0.77, p < 0.001, NMAE: ρ = 0.78, p < 0.001, coverage: ρ = −0.79,
p < 0.001).

For the Sepsis log, similar results are found. As indicated by the plots at the
right hand side of Fig. 5, a correlation is found between the sampling ratio and
the log quality measures (for all error measures: ρ < −0.9, p < 0.001, coverage:
ρ = 0.59, p < 0.001). The larger the sampling ratio, the higher the precision is
(ρ = 0.57, p < 0.001), but no correlation was found between sampling ratio and
recall (ρ = 0.03, p = 0.72). A moderate negative correlation was found between
the log quality measures and precision (for the error measures: −0.60 < ρ <
−0.50, p < 0.001, coverage: ρ = 0.59, p < 0.001), while the log quality measures
did not show any correlation with recall (for all measures: −0.04 < ρ < 0.02,
p > 0.70).

As the results suggest, there is no clear relation between log and model
quality. Hence, it is with the current measures not possible to conclude that
the Inductive Miner is guaranteed to be effective in real-life situations. As a
next step, new log quality measures should be developed that do establish the
required relationship between log and model quality. The process can then be
repeated until sufficient guarantees can be provided on the effectiveness of the
algorithm.

5 Related Work

The statistical approach we propose to establish a relation between log and
model quality relates to event data quality in general, builds upon established
properties of conformance measures, and requires sampling techniques on event
logs. This section reviews literature on these topics, and shows how our approach
relates to them.

22

Measuring log quality. As the process mining manifesto articulates, process
mining treats data as first-class citizens [33], and defines four data qualities, of
which completeness is studied mostly. For example, [5] identifies four categories
of process characteristics and 27 classes of event log quality issues. Most studies
on event log quality focus on the incompleteness of the data. Examples include
not having enough information recorded in the event log (e.g., missing cases or
events) [5, 32], not having recorded enough behavior in the event log [12], or the
traces not being representative of the process [12], and noise. Different notions of
noise are studied, such as infrequent behavior that is either incorrect or rare [11].
However, event logs are studied in isolation in these studies. Instead, we argue
to assess the quality of event logs relative to other event logs, using statistical
techniques based on sampling.

Properties of conformance measures. The process mining community has
recently initiated a discussion on which formal properties should “good” con-
formance measures satisfy. In [30], the authors proposed five properties for
precision measures. For instance, one property states that for two process mod-
els that describe all the traces in the log, a less permissive model should not be
qualified as less precise. By demonstrating that a measure fulfills such proper-
ties, one establishes its usefulness. In [23], the authors strengthened the prop-
erties from [30]. For example, according to these properties, the less permissive
model from the example above should be classified as more precise. In [36], the
precision properties from [30] were refined, and further desired properties for
recall and generalization measures were introduced, resulting in 21 conformance
propositions. Finally, in [22], properties for precision and recall measures that
account for the partial matching of traces, i.e., traces that are not the same but
share some subsequences of activities, were introduced. The precision and recall
measures used in our evaluations satisfy all the introduced desired properties
for the corresponding measures [30, 23, 36, 29].

Sampling in process mining. Sampling has been studied before in process
mining, but never as a systematic approach to evaluate process discovery tech-
niques. A first set of measures for the representativeness of samples have been
proposed in [13]. Their results show the need for a systematic approach as
proposed in this paper.

In [4], a sampling technique specific for the Heuristics Miner is described,
claiming that only 3% of the original log is sufficient to discover 95% of the
dependency relations. However, a proper evaluation of this claim has not been
provided, nor are the results generalizable to other process discovery techniques.

A statistical framework based on information saturation is proposed in [3].
Their approach differs from the probability sampling techniques we propose.
Instead of generating samples that estimate the event log, their approach focuses
on creating a sufficiently small sample that contains as much information from
the event log as possible. Consequently, this approach cannot be used to measure
sample quality with respect to the event log.

23

Several biased sampling techniques are described in [26]. These techniques
have been evaluated on six real-life event logs and three discovery techniques.
The evaluation showed that sampling sometimes improves the F-measure for
some of the models. A similar result on the F-measure was obtained in [16].
Their study applied the Google PageRank algorithm on event logs to create a
representative sample, which reduced the execution time of the Inductive Miner
by half without decreasing the F-measure. As the F-measure harmonizes pre-
cision and recall, and no analysis was performed on the reasons behind the
improvements, it is unclear how sampling influenced the process discovery re-
sults of both studies. Instead of using sampling to improve the quality of the
output, we propose to use probability sampling to analyze the input of algo-
rithms, and to establish a relationship between log and model quality. This
relationship then allows one to explore why some samples give better models
than other samples.

6 Conclusion

This paper identifies the need for process discovery algorithms with guaran-
tees that characterize the dependency between the quality of input event logs
and the quality of the process models constructed from these event logs. In
particular, we argue that process discovery algorithms should produce better
models from better input logs. Currently, process discovery algorithms have
never provided such guarantees, since, so far, we, as a community, lacked a the-
oretical foundation to establish such a relationship. In this paper, for the first
time, measures for the statistical sample quality for ranking the quality of event
logs are proposed. We recommend using grounded conformance checking mea-
sures for assessing the quality of the discovered models. Combining log quality
measures with conformance measures provides a framework to formally define
properties that express the desired guarantee that better event logs result in
better models. These properties can be instantiated with various measures for
quality of event logs and process models and be less or more pronounced, for
example, imposing a strictly increasing or non-decreasing relation, or requiring
a statistical association of a certain degree between the qualities of the corre-
sponding logs and models. To overcome this problem, we propose four stages in
the design of an algorithm. Each design comes with additional properties and
obligations to establish effective algorithms with guarantees.

We invite the process mining community to further contribute to the discus-
sion of desired qualities for process discovery algorithms to ensure that state-
of-the-art algorithms fulfill them, and in this way, advance the field of process
discovery as well as the design and evaluation of such algorithms.

Acknowledgement. Artem Polyvyanyy was in part supported by the Aus-
tralian Research Council project DP220101516.

24

References

[1] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa. Split miner: Dis-
covering accurate and simple business process models from event logs. In
ICDM 2017, pages 1–10. IEEE, 2017.

[2] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella,
M. Mecella, and A. Soo. Automated discovery of process models from event
logs: Review and benchmark. IEEE Trans. Knowl. Data Eng., 31(4):686–
705, 2019.

[3] M. Bauer, A. Senderovich, A. Gal, L. Grunske, and M. Weidlich. How
much event data is enough? a statistical framework for process discovery.
In CAiSE 2018, volume 10816 of LNCS, pages 239–256. Springer, 2018.

[4] A. Berti. Statistical sampling in process mining discovery. In eKNOW
2017, pages 41–43. IARIA, 2017.

[5] J. C. Bose, R. S. Mans, and W. M. P. van der Aalst. Wanna improve
process mining results? In CIDM 2013, pages 127–134. IEEE, 2013.

[6] M. Bozkaya, J. M. A. M. Gabriels, and J. M. E. M. van der Werf. Process
diagnostics : a method based on process mining. In eKNOW 2009, pages
22–27. IEEE, 2009.

[7] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. Qual-
ity dimensions in process discovery: The importance of fitness, precision,
generalization and simplicity. International Journal of Cooperative Infor-
mation Systems, 23(1), 2014.

[8] William G Cochran. Sampling techniques. John Wiley & Sons, 1977.

[9] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press Ltd, 2009.

[10] M. de Leoni and F. Mannhardt. Road Traffic Fine Management Process,
2 2015. doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[11] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst.
Genetic process mining: an experimental evaluation. Data Min. Knowl.
Discov., 14(2):245–304, 2007.

[12] C. Günther. Process mining in flexible environments. PhD thesis, Eind-
hoven University of Technology, 2009.

[13] B. Knols and J. M. E. M. van der Werf. Measuring the behavioral quality
of log sampling. In ICPM 2019, pages 97–104. IEEE, 2019.

[14] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering
block-structured process models from event logs - A constructive approach.
In Petri Nets 2013, volume 7927 of LNCS, pages 311–329. Springer, 2013.

25

[15] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Scalable process
discovery with guarantees. In EMMSAD 2015, volume 214 of LNBIP, pages
85–101. Springer, 2015.

[16] C. Liu, Y. Pei, Q. Zeng, and H. Duan. Logrank: An approach to sam-
ple business process event log for efficient discovery. In Knowledge Sci-
ence, Engineering and Management, volume 11061 of LNCS, pages 415–
425. Springer, 2018.

[17] F. M. Maggi, J. C. Bose, and W. M. P. van der Aalst. Efficient discovery
of understandable declarative process models from event logs. In CAiSE
2012, volume 7328 of LNCS, pages 270–285. Springer, 2012.

[18] F. Mannhardt. Sepsis Cases - Event Log, 12 2016.
doi:10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

[19] J. Pei, L. Wen, H. Yang, J. Wang, and X. Ye. Estimating global complete-
ness of event logs: A comparative study. IEEE Transactions on Services
Computing, 2018.

[20] A. Polyvyanyy. Structuring process models. PhD thesis, University of Pots-
dam, 2012.

[21] A. Polyvyanyy, H. Alkhammash, C. Di Ciccio, L. Garćıa-Bañuelos, A. A.
Kalenkova, S. J. J. Leemans, J. Mendling, A. Moffat, and M. Weidlich.
Entropia: A family of entropy-based conformance checking measures for
process mining. In ICPM Doctoral Consortium and Tool Demonstration,
volume 2703 of CEUR, pages 39–42. CEUR-WS.org, 2020.

[22] A. Polyvyanyy and A. A. Kalenkova. Monotone conformance checking for
partially matching designed and observed processes. In ICPM 2019, pages
81–88, 2019.

[23] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling. Mono-
tone precision and recall measures for comparing executions and specifica-
tions of dynamic systems. ACM Trans. Softw. Eng. Methodol., 29(3):17:1–
17:41, 2020.

[24] Artem Polyvyanyy, Alistair Moffat, and Luciano Garćıa-Bañuelos. Boot-
strapping generalization of process models discovered from event data. In
Advanced Information Systems Engineering 2022, volume 13295 of LNCS,
pages 36–54. Springer, 2022.

[25] J. Rehse and P. Fettke. Process mining crimes - A threat to the validity of
process discovery evaluations. In BPM Forum 2018, volume 329 of LNBIP,
pages 3–19. Springer, 2018.

[26] M. Fani Sani, S. J. van Zelst, and W. M. P. van der Aalst. Improving the
performance of process discovery algorithms by instance selection. Comput.
Sci. Inf. Syst., 17(3):927–958, 2020.

26

[27] William Shadish, Thomas Cook, and Donald Campbell. Experimental and
quasi-experimental designs for generalized causal inference. Wadsworth
Cengage Learning, 2002.

[28] Peter Swanborn. A common base for quality control criteria in quantitative
and qualitative research. Quality & Quantity, 30(1):19––35, 1996.

[29] A. F. Syring, N. Tax, and W. M. P. van der Aalst. Evaluating conformance
measures in process mining using conformance propositions. ToPNOC,
pages 192–221, 2019.

[30] N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. M. P. van der Aalst. The
imprecisions of precision measures in process mining. Inf. Process. Lett.,
135:1–8, 2018.

[31] Andrei Tour, Artem Polyvyanyy, and Anna A. Kalenkova. Agent system
mining: Vision, benefits, and challenges. IEEE Access, 9:99480–99494,
2021.

[32] W. M. P. van der Aalst. Process Mining—Data Science in Action, Second
Edition. Springer Berlin Heidelberg, 2016.

[33] W. M. P. van der Aalst et al. Process mining manifesto. In BPM Work-
shops, volume 99 of LNBIP, pages 169–194. Springer, 2011.

[34] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schim, and A. J. M. M. Weijters. Workflow mining: a survey of is-
sues and approaches. Data and Knowledge Engineering, 47(2):237–267,
2003.

[35] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow
Mining: Discovering Process Models from Event Logs. Knowledge & Data
Engineering, 16(9):1128–1142, 2004.

[36] Wil M. P. van der Aalst. Relating process models and event logs—21
conformance propositions. In ATAED, volume 2115 of CEUR Workshop
Proceedings, pages 56–74. CEUR-WS.org, 2018.

[37] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Sere-
brenik. Process discovery using integer linear programming. Fundamenta
Informaticae, 94(3-4):387 – 412, 2009.

[38] Jan Martijn E. M. van der Werf, Artem Polyvyanyy, Bart R. van Wensveen,
Matthieu J. S. Brinkhuis, and Hajo A. Reijers. All that glitters is not
gold - towards process discovery techniques with guarantees. In Advanced
Information Systems Engineering 2021, volume 12751 of LNCS, pages 141–
157. Springer, 2021.

[39] M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst. PM2:
A process mining project methodology. In CAiSE 2015, volume 9097 of
LNCS, pages 297–313. Springer, 2015.

27

[40] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner (FHM).
In CIDM 2011, pages 310–317. IEEE, 2011.

[41] B. R. van Wensveen. Estimation and analysis of the quality of event log
samples for process discovery. Master’s thesis, Utrecht University, 2020.
https://dspace.library.uu.nl/handle/1874/400143.

28

https://dspace.library.uu.nl/handle/1874/400143

